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Finite-Difference Time-Domain Algorithm
for Solving Maxwell’s Equations in
Rotationally Symmetric Geometries
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Abstract— In this paper, an efficient finite-difference time-
domain algorithm (FDTD) is presented for solving Maxwell’s
equations with rotationally symmetric geometries. The azimuthal
symmetry enables us to employ a two-dimensional (2-D) differ-
ence lattice by projecting the three-dimensional (3-D) Yee-cell
in cylindrical coordinates (v, ¢. z) onto the r- plane. Extensive
numerical results have been derived for various cavity structures
and these results have been compared with those available in the
literature. Excellent agreement has been observed for all of the
cases investigated.

1. INTRODUCTION

HE SOLUTION of Maxwell’s equations in the time

domain is becoming increasingly important as a tool
for analyzing the microwave systems. One of the principle
advantages of the time-domain technique is its ability to
model the electromagnetic fields in an arbitrary geometry
over a broad frequency bandwidth. Since the initial work
of Yee [1], the finite-difference time-domain method (FDTD)
has been extensively used and developed for electromagnetic
computations, and its applications cover many areas in elec-
tromagnetics [2]. Rotationally symmetric structures, e.g., the
coaxial waveguide and the cylindrical cavity are frequently
encountered in microwave engineering, and the objective of
this paper is to present an efficient and memory-saving FDTD
algorithm for modeling these structures. The nonorthogonal
approach such as in [3], [4] can be employed, but it is not
efficient for symmetric structures. These structures have been
solved in the past with frequency domain approaches such as
the finite element method and the finite integration technique.
but methods of this type may require the solution of a large
sparse matrix equation that is avoided in the time domain
approach [5]. By using the recursive algorithm in the time
domain, a very large number of unknowns can be readily
handled.
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II. FDTD ALGORITHM FOR
ROTATIONALLY SYMMETRICAL STRUCTURES

A. Assumption for Angular Variation

Instead of using the three-dimensional (3-D) technique
described in [2], we introduce a simplified two-dimensional
(2-D) FDTD algorithm for rotationally symmetric structures.
We begin with the assamption that the angular variation of
the electromagnetic fields has either a sin(me¢) or cos(me)
variation, and, hence this angular behavior can be factored out
from the Maxwell’s equations. For generality, we assume that
the relative permittivity, permeability, and electric and mag-
netic conductivities have the biaxial tensor form in cylindrical
coordinates given by

o, 0 0
[@]=10 ay O (1)
0 0 «

where « represents the relative permittivity (e, ), relative per-
meability (i), the electric conductivity (o, ), or the magnetic
conductivity (o). Using the generalized differential matrix
operators [7], we can express the Maxwell’s curl equations as
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where 8, denotes 9/0a(a = r,z,t). In the following, we let
om = 0 and o, = o for the sake of simplicity.

B. The 2-D Difference Lattice

It is evident that, in view of (2), the fields at any arbitrary
¢ = ¢, plane can be readily related to its corresponding value
in the reference ¢-plane, viz., ¢ = 0. This enables us to reduce
the original Yee algorithm in 3-D to an equivalent 2-D one,
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Fig. 1. (a) Conventional 3-D FDTD lattice in cylindrical coordinates. (b)
Projection of 3-D FDTD cell at r-z plane.

say in the ¢ = O plane. We begin with the 3-D Yee-cell in
cylindrical coordinates as shown in Fig. 1(a), and project it
onto the r-z plane resulting in the 2-D finite difference lattice
shown in Fig. 1(b), which is also similar to the grid in [5].

This 2-D FDTD lattice is different from the conventional
3-D case in the following two ways: i) (E,, H,) and (E,, H.)
share the same geometrical locations; and ii) Ey is located at
the four corners of the cell. However, as in the conventional
Yee lattice, H,, still resides at the center of the face.

C. Finite-Difference Time-Domain for the Equivalent
2-D Lattice for Cylindrical Systems

Discetizing the two curl equations (2a) and (2b) in the 2-D
cell in Fig. 1(b), we obtain
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Fig. 2. (a) A portion of the FDTD lattice at 7 = 0. (b) Integral path to
evaluate H, at r = 0.
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Fig. 3.

(a) Cross section of cylindrical cavity (dimension in cm). (b) Cross section of coaxial cavity (dimension m cm). (¢) Cross section of capacitively-loaded
cavity (dimension in cm). (d) Cross section of cylindrical cavity with a dielectric disk filing (s, =

35 74 and dimension 1n cm). (e) Cross section of

loaded cavity with an inner conductor of complex shape (dimension in cm).
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where 7, = (i — 1/2)Ar and 7y, = 79 = 0, and the fields
associated with coordinate (¢, ) are enclosed with the box
shown in Fig. 1(b).

The above equations, which include the appropriate metric
coefficients in the cylindrical coordinates, are suitable for the
time domain iteration once the problem of singularities and
of these coefficients at » = 0 in (3a), (3¢). and (4c) has been
addressed. This is discussed in the following section.

D. Handling the Singularities at r = 0

The electromagnetic fields F,, H;, and H, at one of the
natural boundaries of the computational domain in the ¢ = 0
plane, viz., the cylindrical axis (r = 0), must be uniquely
defined. Even though E.. H, and H_ exhibit singularities at
r = U, the actual fields there must be finite in both the time
and frequency domains. Hence, these singularities must be
removed before (3) and (4) could be used for time stepping.
To this end. we consider a portion of the FDTD lattice at
r = 0, as shown in Fig. 2(a). In this figure ¢ is the lattice
index for the radial dimension, and j is the lattice index for
the axial dimension.

On the natural boundary, r = 0, there exists a total of three
components, viz., .. Hy and H_.. However, as seen from (3b)
and (3c¢), only the components tangential to this boundary, i.e.,
Hy and H, are needed to update the adjacent £, and E, fields
internal to the mesh. We note from (3c¢) that to compute F. at
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TABLE 1
RESONANT FREQUENCIES FOR TE. anp TM. MobE (GHz)
Mode 010 011 012 013 014 015 020 021 022 023
“ TE, 0.997 | 1.189 | 1.455 | 1.761 1.732 | 1.849
™, 0.579 0.690 0.947 1.265 1.601 1.961 1.330 1.382 1.527 1.742
i=1,H, ati = 0is to be multiplied by a factor r,_; /» which HTY2(0,5) = HP-Y2(0, ) — 141 EZ(L3).  (©
is zero since r;_1,9 = T172 = 0, hence, Hy at r = 0 is not i ® pophz A P

needed. We further note that from (3b) to compute Fy at¢ = 1
we need to know H, at 7 = 0. In summary, only H, is needed
at the boundary ¢ = 0 to update all of the relevant fields.

From (2b), we note that H, is zero at r = 0 for m # 0;
hence, we ohly need to evaluate H, at r = 0 for m = 0.
To this end, we start from the integral form of Maxwell’s
equation in the time domain, viz.

Edl

where As and Ac are the finite difference area and integral
paths defined in Fig. 2(b). From (5), we can obtain the
following time update equation for H, at r =0 and m =0

// p oL 5)

Once H, is known at 7 = 0 the rest of the field components
can be evaluated using (3) and (4).

E. Numerical Implementation of Blackman—Harris
Windows Excitation

To suppress the initial transients, the Blackman—Harris
(BH) window function has been used in this work instead
of the Gaussian excitation function [8]. Since the sidelobe
level of the window function is approximately —92 dB, the
BH window function provides a smoother transition of the
excitation function. The BH function is discretized in the
following form as shown in (7) at the bottom of the page,
where t,, is the time step, ¢, indicates the time position for

b —te
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Nuais
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Fig. 4. (a) E, at cell [20, 60] as a function of frequency for an empty
cylindrical cavity. (b) Hy, at cell [20, 60] as a function of frequency for an
empty cylindrical cavity.

the center of the window function, and Ny,i¢ is the designed
half width of the BH window function. It is evident from
(7) that the BH window function is turned on only during a
designed time interval. In practice, a small value of Ny is
chosen to obtain a broad frequency band, and a large value is
chosen when the desired bandwidth is narrow. In this work, the
window function is implemented as a soft source for exciting
both TM, and TE, modes.

It is implied that rotationally symmetric excitations are
automatically taken even though the sources are located on
the r-z plane in the practical computations.

III. NUMERICAL RESULTS

We have investigated the resonant properties of a number of
cylindrical cavities, shown in Fig. 3. by using the rotationally
symmetric FDTD algorithm described in the last section.
To construct the FDTD grids for these geometries, a mesh
generator has been developed to provide the geometrical and
material input files to the FDTD solver.

A. Empty Cylindrical Cavity

A cross section of the empty cylindrical cavity and its
dimensions are shown Fig. 3(a), which was discretized by

TEz(011) Mode of Circular Cavity
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Fig. 5. (a) Normalized distribution of £, along the radius at = = 0.2 cm

for TE:017 mode. (b) Normalized distribution of E, along the height at
r = 0.098 c¢m for TE.g17 mode.

using 50 by 100 cells along r» and z, respectively. The
analytical resonant frequencies [9] for both the TE, and
TM. modes are listed in Table I. In Fig. 4(a) and (b),
we display a frequency spectrum of the field components
Ey4 and H, at cell [20, 60] for the TE. and TM. modes.
respectively. Table I shows excellent agreement between the
computed and analytical resonant frequencies for the dominant
mode and the higher-order modes, and the relative error is
seen to be less than 0.5%. Fig. 5(a) and (b) show that the
normalized electric field E, along the two center cuts for
the TE.g11 mode compares very well with the analytical
results.

B. Coaxial Cavity

The next geometry investigated was that shown in Fig.
3(b) of the coaxial cavity. The FDTD result for the dominant
mode was compared with that given in Marcuvitz [10], which
predicted a resonant frequency of 1.5027 GHz. Fig. 6 shows
the FDTD results for H at cell [20, 60] in the entire frequency
range from O to 3 GHz. The dominant resonant frequency
(DRF) computed by the FDTD method was 1.5075 GHz. The
approximate procedure of Marcuvitz [10] is valid only for the



CHEN et al.: FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM FOR SOLVING MAXWELL’S EQUATIONS

837

Coaxial Cavity

0.25 rrrrr e
-+ DRF:
S oo [ [105: 150.27 MHz
< [ FDTD:150.75 MHz
S
J o015k
S ]
3 -
a 01F
N .
+ 3
9 i
< 0.05 |
= [
o ke 1 1
0 0.5 1 15 2 25 3
Frequency in GHz

Fig. 6. H, at cell {20, 60] as a function of frequency for a coaxial cavity.
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Fig. 7. E. at cell [20, 60] as a function of frequency for a capaci-
tively-loaded cavity.

dominant mode, hence, it was not possible to compare the
results for the higher-order modes with those based on the
Marcuvitz method.

C. Capacitively-Loaded Cavity

Another interesting structure is the capacitively-loaded cav-
ity shown in Fig. 3(c). It is similar to the coaxial geometry,
but its inner conductor only makes contact with the top wall.
The dominant resonant frequency of 0.661 GHz derived by
using the FDTD method, and shown in Fig. 7, agrees well
with the resonant frequency of 0.667 GHz computed with the
approximate method [10].

D. Cylindrical Cavity with a Dielectric Disk Filling

In microwave applications, cavities filled with dielectric
material are used quite extensively. We consider the case of
a dielectric disk located in the center of a cylindrical cavity,
as shown Fig. 3(d). The finite element analysis yielded the
resonant frequency of 3.435 GHz for the TEy; mode [3],
which compares well with the FDTD result of 3.439 GHz,
shown in Fig. 8. The distributions of F,,Ey and H, fields

Cylindrical Cavity with a Dielectric Disk Filling
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Fig. 8. E, at cell [20, 60] as a function of frequency for a cylindrical cavity
with a dielectric disk filling.

at the dominant resonant frequency are displayed in Fig. 9(a),
(b), and (c). The dimensions in these figures are in meters.
It is evident that the electromagnetic energy in this cavity is
concentrated either inside or in the vicinity of the dielectric
disk.

E. Loaded Cavity with an Inner Conductor of Complex Shape

For the final example, we analyze a cavity structure whose
inner conductor has a complex configuration, as shown in
Fig. 3(e). The computed resonant frequency for the dominant
mode, plotted in Fig. 10, is 500.63 MHz, and it compares
well with the measured data of 501 MHz, despite the fact that
the physical cavity structure is slightly asymmetric due to the
presence of the feed and coupling ports.

IV. CONCLUSION

An efficient FDTD algorithm for solving Maxwell’s equa-
tions for rotationally symmetric structures has been presented.
A number of representative cylindrical cavities have been in-
vestigated, and the algorithm has been validated by comparing
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(a) Distribution of Ey in the right half of the cylindrical cavity with a dielectric disk filling. (b) Distribution of - in the right half of the cylindrical

cavity with a dielectric disk filling. (c) Distribution of H in the right half of the cylindrical cavity with a dielectric disk filling.
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Fig. 10. H, at cell [25, 100] as a function of frequency for a loaded cavity
with an inner conductor of complex shape.

its results with the analytical, numerical and experiment results
published elsewhere.
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