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Finite-Difference Time-Domain Algorithm

for Solving Maxwell’s Equations in

Rotationally Symmetric Geometries
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Abstract— In this paper, an efficient finite-difference time-
domain algorithm (FDTD) is presented for solving Maxwell’s

equations with rotationally symmetric geometries. The azimuthal

symmetry enables us to employ a two-dimensional (2-D) differ-
ence lattice by projecting the three-dimensional (3-D) Yee-cell
in cylindrical coordinates (r. d, s) onto the r-: plane. Extensive

numerical results have been derived for various cavity structures
and these results have been compared with those available in the
literature. Excellent agreement has been observed for all of the

cases investigated.

I. INTRODUCTION

T HE SOLUTION of Maxwell’s equations in the time

domain is becoming increasingly important as a tool

for analyzing the microwave systems. One of the principle

advantages of the time-domain technique is its ability to

model the electromagnetic fields in an arbitrary geometry

over a broad frequency bandwidth. Since the initial work

of Yee [1], the finite-difference time-domain method (FDTD)

has been extensively used and developed for electromagnetic

computations, and its applications cover many areas in elec-

tromagnetic [2]. Rotationally symmetric structures, e.g., the

coaxial waveguide and the cylindrical cavity are frequently

encountered in microwave engineering, and the objective of

this paper is to present an efficient and memory-saving FDTD

algorithm for modeling these structures. The nonorthogonal

approach such as in [3], [4] can be employed, but it is not

efficient for symmetric structures. These structures have been

solved in the past with frequency domain approaches such as

the finite element method and the finite integration technique.

but methods of this type may require the solution of a large

sparse matrix equation that is avoided in the time domain

approach [5]. By using the recursive algorithm in the time

domain, a very large number of unknowns can be readily

handled.
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II. FDTD ALGORITHM FOR

ROTATIONALLY SYMMETRICAL STRUCTURES

A. Assumption for Angular Variation

Instead of using the three-dimensional (3-D) technique

described in [2], we introduce a simplified two-dimensional

(2-D) FDTD algorithm for rotationally symmetric structures.

We begin with the assumption that the angular variation of

the electromagnetic fields has either a sin(rn#) or cos(rn~)

variation, and, hence this angular behavior can be factored out

from the Maxwell’s equations. For generality, we assume that

the relative permittivity, permeability, and electric and mag-

netic conductivities have the biaxial tensor form in cylindrical

coordinates given by

[1
o[a]=%:* o (1)o 0 Cl!Z

where u represents the relative permittivity (E,), relative per-

meability (K. ), the electric conductivity (a,), or the magnetic

conductivity (am ). Using the generalized differential matrix

operators [7], we can express the Maxwell’s curl equations as

[

oa.
&IL/r’

—

(2a)

where 13a denotes til/ih (a = r, z, t). In the following, we let

cr – O and cr. = o for the sake of simplicity.~—

B. The 2-D Dl~erence Lattice

It is evident that, in view of (2), the fields at any arbitrary

C)= do plane can be readily related to its corresponding value
in the reference @plane, viz., # = O. This enables us to reduce

the original Yee algorithm in 3-D to an equivalent 2-D one,
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Fig. 1. (a) Conventional 3-D FDTD lattice in cylindrical coordinates. (b)

Projection of 3-D FDTD cell at r-% plane.

say in the ~ = O plane. We begin with the 3-D Yee-cell in

cylindrical coordinates as shown in Fig. 1(a), and project it

onto the r-z plane resulting in the 2-D finite difference lattice

shown in Fig. 1(b), which is also similar to the grid in [5].

This 2-D FDTD lattice is different from the conventional

3-D case in the following two ways: i) (E,, EIr) and (~,, 11~)

share the same geometrical locations; and ii) E@ is located at

the four corners of the cell. However, as in the conventional

Yee lattice, llo still resides at the center of the face.

C. Finite-Di#erence Time-Domain for the Equivalent

2-D Luttice for Cylindrical Systems

Discetizing the two curl equations (2a) and (2b) in the 2-D

cell in Fig. l(b), we obtain

E:+ ’(i,j)

_ (l-%JE.(~,j)_ ~

-(1+%) r (1+%)

[

H;+’q,j) - Hy’(i,j - 1)

A,z
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Wit Cell (1, j)

(b)

Fig. 2. (a) A portion of the FDTD lattice at r = O. (b) Integral path to

evafuate Hz at r = O.
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Fig. 3. (a) Cross section of cylindrical cavity (dimension in cm). (b) Cross section of coaxial cavity (dimension m cm). (c) Cross section of capacitively-loaded
cavity (dimension in cm), (d) Cross section of cylindrical cavity with a dielectric disk filhng (s, = 35 74 and dimension m cm). (e) Cross section of
loaded cavity with an inner conductor of complex shape (dimension in cm),

Hyz(i, j) + EoEZ

“ (’+:)

1 T,~T J
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PoiLr
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(4b)

j7;+l/2(~,j)

where r, = (i – l/2)Ar and 1-112 = r. = O, and the fields

associated with coordinate (L, j) are enclosed with the box

shown in Fig. 1(b).

The above equations, which include the appropriate metric

coefficients in the cylindrical coordinates, are suitable for the

time domain iteration once the problem of singularities and

of these coefficients at r = O in (3a), (3c), and (4c) has been

addressed. This is discussed in the following section.

D. Handling the Singularities at r = O

The electromagnetic fields E,, Ho, and Hz at one of the

natural boundaries of the computational domain in the # = O

plane, vi:., the cylindrical axis (r = O), must be uniquely

defined. Even though E,, Hti and Hz exhibit singularities at
r = (J, the actual fields there must be finite in both the time

and frequency domains. Hence, these singularities must be

removed before (3) and (4) could be used for time stepping.

To this end, we consider a portion of the FDTD lattice at
r = O, as shown in Fig. 2(a). In this figure z is the lattice

index for the radial dimension. and j is the lattice index for

the axial dimension.

On the natural boundary. r = 0, there exists a total of three

components, viz., E.. IIti and H.. However, as seen from (3b)

and (3c), only the components tangential to this boundary, i.e.,

H4 and Hz, are needed to update the adjacent E4 and Ez fields

internal to the mesh. We note from (3c) that to compute E, at
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TABLE I
RESONANT FRSQOENCIESFOR TE, AND TM, MODE (GHz)

Mode 010 011 012 013 014 015 020 021 022 023

TEZ 0.997 1.189 1.4.55 1.761 1.732 1.849

TMZ 0.579 0.690 0.947 1.265 1.601 1.961 1.330 1.382 1.527 1.742

i = 1, H+ at i = O iS to be multiplied by a factor r%_~12 which

is zero since r~_I/2 = rl/z = O, hence, H4 at T = O is not

needed. We further note that from (3b) to compute E@ at i = 1

we need to know Hz at i = O. In summary, only ~, is needed

at the boundary i = O to update all of the relevant fields.

From (2b), we note that H= is zero at r = O for m # O;

hence, we only need to evaluate H. at r = O for m = O.

To this end, we start from the integral form of Maxwell’s

equation in the time domain, viz.

/
;.d~=–

J
~!?# . d; (5)

Ac
As

where As and Ac are the finite difference area and integral

paths defined in Fig. 2(b). From (5), we can obtain the

following time update equation for H, at r = O and m = O

?.qtn) =

Once Hz is known at r = O the rest of the field components

can, be evaluated using (3) and (4).

E. Numerical Implementation of Blackman–Harris

Windows Excitation

To suppress the initial transients, the Blackman-Harris

(BH) window function has been used in this work instead

of the Gaussian excitation function [8]. Since the sidelobe

level of the window function is approximately –92 dB, the

BH window function provides a smoother transition of the

excitation function. The BH function is discretized in the

following form as shown in (7) at the bottom of the page,

where tn is the time step, tc indicates the time position for

““’’+o’’’’gcos(%?)
‘014128c0s(2m%h~f’’))+ 00’168c0s ‘myh~ftc) ~ti~~;~ha’f’tc+~ha’f] ‘7)

( )}
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Fig. 4, (a) Ed at cell [20, 60] as a function of frequency for an empty
cylindrical cavity. (b) H4 at cell [20, 60] as a function of frequency for m

empty cylindrical cavity.

the center of the window function, and Nhalf is the designed

half width of the BH window function. It is evident from

(7) that the BH window function is turned on only during a

designed time interval. In practice, a small vahte of Nhalf is

chosen to obtain a broad frequency band, and a large value is

chosen when the desired bandwidth is narrow. In this work, the

window function is implemented as a soft source for exciting

both TM@ and T13@ modes.

It is implied that rotationally symmetric excitations are

automatically taken even though the sources are located on

the r-z plane in the practical computations.

III. NUMERICAL RESULTS

We have investigated the resonant properties of a number of

cylindrical cavities, shown in Fig. 3. by using the rotationally

symmetric FDTD algorithm described in the last section.

To construct the FDTD grids for these geometries, a mesh

generator has been developed to provide the geometrical and

material input files to the FDTD solver.

A. Empty Cylindrical CaiiQ

A cross section of the empty cylindrical cavity and its

dimensions are shown Fig. 3(a), which was discretized by
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Fig. 5. (a) Normahzed dmtrlbutlon of E@ along the radius at : = 0.2 cm
for TE,O I I mode, (b) Normalized dlstribut]on of E@ along the height at
r = 0.098 cm for TE,OI, mode.

using 50 by 100 cells along r and z, respectively. The

analytical resonant frequencies [9] for both the TEZ and

TMZ modes are listed in Table I. In Fig. 4(a) and (b),

we display a frequency spectrum of the field components

E@ and Hd at cell [20, 60] for the TEZ and TM= modes,

respectively, Table I shows excellent agreement between the

computed and analytical resonant frequencies for the dominant

mode and the higher-order modes, and the relative error is

seen to be less than 0.5%. Fig. 5(a) and (b) show that the

normalized electric field Ed along the two center cuts for

the TE:U1l mode compares very well with the analytical

results.

B. Coaxial Cavity

The next geometry investigated was that shown in Fig.

3(b) of the coaxial cavity. The FDTD result for the dominant

mode was compared with that given in Marcuvitz [10], which

predicted a resonant frequency of 1.5027 GHz. Fig. 6 shows

the FDTD results for H4 at cell [20, 60] in the entire frequency

range from O to 3 GHz. The dominant resonant frequency

(DRF) computed by the FDTD method was 1.5075 GHz. The

approximate procedure of Marcuvitz [10] is valid only for the
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Fig. 6. Hd at cell [20, 60] as a function of frequency for a coaxiat cavity.
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Fig. 7. l?, at cell [20, 60] as a function of frequency for a capaci-
tively-loaded cavity.

dominant mode, hence, it was not possible to compare the

results for the higher-order modes with those based on the

Marcuvitz method.

C. Capacitively-Loaded Cavity

Another interesting structure is the capacitively-loaded cav-

ity shown in Fig. 3(c). It is similar to the coaxial geometry,

but its inner conductor only makes contact with the top wall.

The dominant resonant frequency of 0.661 GHz derived by

using the FDTD method, and shown in Fig. 7, agrees well

with the resonant frequency of 0.667 GHz computed with the

approximate method [10].

D. Cylindrical Cavity with a Dielectric Disk Filling

In microwave applications, cavities filled with dielectric

material are used quite extensively, We consider the case of

a dielectric disk located in the center of a cylindrical cavity,

as shown Fig. 3(d). The finite element analysis yielded the

resonant frequency of 3.435 GHz for the TEO1 mode [3],

which compares well with the FDTD result of 3.439 GHz,

shown in Fig. 8. The distributions of E., Ed and HZ fields

Cylindrical Cavity with a Dielectric Dick Filling
1.2 I I [

: DRF:
I

o
1 : FEM [6]: 3.435 GHz

g - FDTD: 3.439 GHz

~’ 0.8

~

u 0.6

%

~ 0.4
~

~ ~2

e“

o
0 1

Freq2wncy in ;Hz
4 5

Fig. 8. ~+ at cell [20, 60] as a function of frequency for a cylindrical cavity

with a dielectric disk filling.

at the dominant resonant frequency are displayed in Fig. 9(a),

(b), and (c). The dimensions in these figures are in meters.

It is evident that the electromagnetic energy in this cavity is

concentrated either inside or in the vicinity of the dielectric

disk.

E. Loaded Cavity with an Inner Conductor of Complex Shape

For the final example, we analyze a cavity structure whose

inner conductor has a complex configuration, as shown in

Fig. 3(e). The computed resonant frequency for the dominant

mode, plotted in Fig. 10, is 500.63 MHz, and it compares

well with the measured data of 501 MHz, despite the fact that

the physical cavity structure is slightly asymmetric due to the

presence of the feed and coupling ports.

IV. CONCLUSION

An efficient FDTD algorithm for solving Maxwell’s equa-

tions for rotationally symmetric structures has been presented.

A number of representative cylindrical cavities have been in-

vestigated, and the algorithm has been validated by comparing
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cavity with a dielectric disk filling. (c) Distribution of Hz in the right half of the cylindrical cavity with a dielectric disk filling.
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Fig. 10. H@ at cell [25, 100] asafunction of frequency fora loaded cavity
with an inner conductor of complex shape.

its results with the analytical, numerical and experiment results

published elsewhere.
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